दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$ का केन्द्र है
$(1,3)$
$(2, 3)$
$(3, 2)$
$(3, 1)$
वृत्त की त्रिज्या जिसका केन्द्र $(0,3)$ व जो दीर्घवृत्त $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ की नाभि से गुजरता है, है
दीर्घवृत्त $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ के नाभिलम्बों के सिरों पर खींची गई स्पर्श रेखाओं द्वारा निर्मित चतुर्भुज का क्षेत्रफल (वर्ग इकाइयों में) है
दीर्घवृत्त $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ की नाभिलम्ब जीवा है
यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ जिसकी नाभियाँ ${F_1}$ व ${F_2}$ हैं पर एक चर बिन्दु $P$ है। यदि $A$, त्रिभुज $P{F_1}{F_2}$ का क्षेत्रफल हो तो $A$ का अधिकतम मान है
एक बिन्दु इस प्रकार गमन करता है कि उसकी बिन्दु $(-2, 0)$ से दूरी रेखा $x = - \frac{9}{2}$ से दूरी की $\frac{2}{3}$ गुनी है तो उसका बिन्दुपथ होगा