यदि वक्रों $\frac{x^2}{16}+\frac{y^2}{9}=1$ और $x^2+y^2=12$ की उभयनिष्ट स्पर्श रेखा की ढाल $m$ हो तो $12 m ^2$ का मान होगा

  • [JEE MAIN 2022]
  • A

    $6$

  • B

    $9$

  • C

    $10$

  • D

    $12$

Similar Questions

दीर्घवृत्त (ellipse)

$\frac{x^2}{4}+\frac{y^2}{3}=1$

पर विचार कीजिए। माना कि $H (\alpha, 0), 0<\alpha<2$, एक बिंदु (point) है। बिंदु $H$ से होती हुई एवं $y$-अक्ष के समांतर (parallel to the $y$-axis) एक सरल रेखा (straight line) दीर्घवृत्त एवं इसके सहवृत्त (auxiliary circle) को प्रथम चतुर्थांश (first quadrant) में क्रमशः बिंदुओं $E$ एवं $F$ पर प्रतिच्छेदित (intersect) करती है। बिंदु $E$ पर दीर्घवृत्त की स्पर्श रेखा (tangent) धनात्मक $x$-अक्ष को एक बिंदु $G$ पर प्रतिच्छेदित करती है। मान लिजिए कि $F$ एवं मूलबिंदु (origin) को जोड़ने वाली सरल रेखा, धनात्मक $x$-अक्ष के साथ एक कोण (angle) $\phi$ बनाती है।

$List-I$ $List-II$
यदि $\phi=\frac{\pi}{4}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
यदि $\phi=\frac{\pi}{3}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($Q$) $1$
यदि $\phi=\frac{\pi}{6}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($R$) $\frac{3}{4}$
यदि $\phi=\frac{\pi}{12}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

सही विकल्प हैं :

  • [IIT 2022]

दीर्घवृत्त के नाभियों के बीच की दूरी 16 तथा उत्केन्द्रता $\frac{1}{2}$ है। दीर्घवृत्त के दीर्घाक्ष की लम्बाई है

एक दीर्घवृत्त के दीर्घ तथा लघु अक्षों की लम्बाइयाँ क्रमश: $10$ तथा $8$ हैं और उसका दीर्घ अक्ष $y$ - अक्ष है। दीर्घवृत्त के केन्द्र को मूलबिन्दु मानते हुये दीर्घवृत्त का समीकरण है

अंतराल $0<\theta<\frac{\pi}{2}$ में दीर्घवृत $\frac{x^2}{9}+\frac{y^2}{4}=1$ के चार बिन्दुओं $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ पर चार स्पर्शज्याएँ खींची गयी है। यदि $A(\theta)$ इन स्पर्शज्याओं द्वारा बनाए गए चतुर्भुज को इंगित करता है, तब $A(\theta)$ का न्यूनतम मान निम्न होगा:

  • [KVPY 2018]

$\frac{|x|}{2}+\frac{|y|}{3}=1$ के बाहर और दीर्घवृत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के अंदर के क्षेत्र का क्षेत्रफल (वर्ग इकाई में) है

  • [JEE MAIN 2020]