The centres of two circles $C_1$ and $C_2$ each of unit radius are at a distance of $6$ units from each other. Let $P$ be the mid point of the line segment joining the centres of $C_1$ and $C_2$ and $C$ be a circle touching circles $C_1$ and $C_2$ externally. If a common tangent to $C_1$ and $C$ passing through $P$ is also a common tangent to $C_2$ and $C$, then the radius of the circle $C$ is
$3$
$4$
$6$
$8$
The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-
The point of contact of the tangent to the circle ${x^2} + {y^2} = 5$ at the point $(1, -2)$ which touches the circle ${x^2} + {y^2} - 8x + 6y + 20 = 0$, is
The two tangents to a circle from an external point are always
Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to
If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the equation of this circle is