10-1.Circle and System of Circles
hard

Let the tangent to the circle $x^{2}+y^{2}=25$ at the point $R (3,4)$ meet $x$ -axis and $y$ -axis at point $P$ and $Q$, respectively. If $r$ is the radius of the circle passing through the origin $O$ and having centre at the incentre of the triangle $OPQ ,$ then $r ^{2}$ is equal to

A

$\frac{529}{64}$

B

$\frac{125}{72}$

C

$\frac{625}{72}$

D

$\frac{585}{66}$

(JEE MAIN-2021)

Solution

Tangent to circle $3 x+4 y=25$

$OP + OQ + OR =25$

In centre $=\left(\frac{\frac{25}{4} \times \frac{25}{3}}{25}, \frac{\frac{25}{4} \times \frac{25}{3}}{25}\right)$

$=\left(\frac{25}{12}, \frac{25}{12}\right)$

$\therefore r ^{2}=2\left(\frac{25}{12}\right)^{2}=2 \times \frac{625}{144}=\frac{625}{72}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.