પ્લાન્ક લંબાઈ એટલે એવું કોઈ લાક્ષણિક અંતર કે જ્યાં ક્વોંટમ ગુરુત્વિય અસર નોંધપાત્ર હોય, તેને મૂળભૂત ભૌતિક અચળાંકો $G, h$ અને $c$ ના યોગ્ય મિશ્રણથી દર્શાવી શકાય છે. નીચેનામાથી કયું પ્લાન્ક લંબાઈ દર્શાવે છે?
$G^2hc$
${\left( {\frac{{Gh}}{{{c^3}}}} \right)^{\frac{1}{2}}}$
${G^{\frac{1}{2}}}{h^2}c$
$Gh^2c^3$
$(\rho )$ ઘનતા $(r)$ ત્રિજ્યા $(S)$ પૃષ્ઠતાણ ધરાવતા પ્રવાહીના ટીપાંના દોલનોનો આવર્તકાળ $(T)$ નો કયો સંબંધ સાચો પડે?
નીચેનામાંથી કયા સંબંધની મદદથી પરિમાણનું પૃથ્થકરણ કરી શકાય છે?
બે પરમાણુઓ વચ્ચેની આંતરક્રિયાના બળને
$F=\alpha \beta \,\exp \,\left( { - \frac{{{x^2}}}{{\alpha kt}}} \right);$
વડે આપવામાં આવે છે, જ્યાં $x$ એ અંતર, $k$ બોલ્ટઝમેન અચળાંક અને $ T$ તાપમાન છે. તથા $\alpha$ અને $\beta$ એ અન્ય અચળાંકો છે. $\beta$ નું પરિમાણિક શું થાય?
જો કોઈ નળીમાંથી વહેતા પ્રવાહીનો ક્રિટીકલ વેગ $v_c$ ના પરિમાણને $ [\eta ^x,\rho ^y,r^z]$ વડે દર્શાવવામાં આવે છે. જયાં $\eta,\rho $ અને $r $ એ અનુક્રમે પ્રવાહીનો શ્યાનતા ગુણાંક, પ્રવાહીની ઘનતા અને નળીની ત્રિજયા છે, તો $ x,y $ અને $z$ ના મૂલ્યો અનુક્રમે કેટલા હશે?
જો દબાણ $P$, વેગ $V$ અને સમય $T$ ને મૂળભૂત ભૌતિક રાશિ તરીકે લેવામાં આવે છે તો બળનું પારિમાણિક સૂત્ર શું હશે ?