The charges on two plates of a $10\,\mu f$ capacitor are $5\,\mu C$ and $15\,\mu C$ then the potential difference across the capacitor plates is........$V$

  • A

    $0.5$

  • B

    $1$

  • C

    $1.5$

  • D

    $2$

Similar Questions

Capacitance of an isolated conducting sphere of radius $R_{1}$ becomes $n$ times when it is enclosed by a concentric conducting sphere of radius $R_{2}$ connected to earth. The ratio of their radii $\left(\frac{ R _{2}}{ R _{1}}\right)$ is:

  • [JEE MAIN 2022]

$1000$ small water drops each of capacitance $C$ join together to form one large spherical drop. The capacitance of bigger sphere is ......... $C$

Answer the following:

$(a)$ The top of the atmosphere is at about $400\; kV$ with respect to the surface of the earth, corresponding to an electric field that decreases with altitude. Near the surface of the earth, the field is about $100\; Vm ^{-1} .$ Why then do we not get an electric shock as we step out of our house into the open? (Assume the house to be a steel cage so there is no field inside!)

$(b)$ A man fixes outside his house one evening a two metre high insulating slab carrying on its top a large aluminium sheet of area $1\; m ^{2} .$ Will he get an electric shock if he touches the metal sheet next morning?

$(c)$ The discharging current in the atmosphere due to the small conductivity of air is known to be $1800 \;A$ on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?

$(d)$ What are the forms of energy into which the electrical energy of the atmosphere is dissipated during a lightning? (The earth has an electric field of about $100\; Vm ^{-1}$ at its surface in the downward direction, corresponding to a surface charge density $=-10^{-9} \;C \,m ^{-2} .$ Due to the slight conductivity of the atmosphere up to about $50\; km$ (beyond which it is good conductor), about $+1800 \;C$ is pumped every second into the earth as a whole. The earth, however, does not get discharged since thunderstorms and lightning occurring continually all over the globe pump an equal amount of negative charge on the earth.)

A $500 \,\mu F$ capacitor is charged at a steady rate of $100\, \mu C/sec$. The potential difference across the capacitor will be $10\, V$ after an interval of.....$sec$

What physical quantities may $X$ and $Y$ represent ? ($Y$ represents the first mentioned quantity)