- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
The circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ bisects the circumference of the circle ${x^2} + {y^2} + 2g'x + 2f'y + c' = 0$, if
A
$2g'(g - g') + 2f'(f - f') = c - c'$
B
$g'(g - g') + f'(f - f') = c - c'$
C
$f(g - g') + g(f - f') = c - c'$
D
None of these
Solution
(a) Common chord ${S_1} – {S_2} = 0$ passes through the centre of ${S_2} = 0$.
Standard 11
Mathematics
Similar Questions
normal