The coefficient of $x^{50}$ in the binomial expansion of ${\left( {1 + x} \right)^{1000}} + x{\left( {1 + x} \right)^{999}} + {x^2}{\left( {1 + x} \right)^{998}} + ..... + {x^{1000}}$ is
$\frac{{\left( {1000} \right)!}}{{\left( {50} \right)!\left( {950} \right)!}}$
$\frac{{\left( {1000} \right)!}}{{\left( {49} \right)!\left( {951} \right)!}}$
$\frac{{\left( {1001} \right)!}}{{\left( {51} \right)!\left( {950} \right)!}}$
$\frac{{\left( {1001} \right)!}}{{\left( {50} \right)!\left( {951} \right)!}}$
Let the coefficients of $x ^{-1}$ and $x ^{-3}$ in the expansion of $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0$, be $m$ and $n$ respectively. If $r$ is a positive integer such $m n^{2}={ }^{15} C _{ r } .2^{ r }$, then the value of $r$ is equal to
Find the coefficient of $a^{4}$ in the product $(1+2 a)^{4}(2-a)^{5}$ using binomial theorem.
The coefficient of ${x^{39}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is
If the ${(r + 1)^{th}}$ term in the expansion of ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ has the same power of $a$ and $b$, then the value of $r$ is
The number of terms in the expansion of ${\left( {\sqrt[4]{9} + \sqrt[6]{8}} \right)^{500}}$, which are integers is