If the ratio of the fifth term from the begining to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}: 1$, then the third term from the beginning is:
$60 \sqrt{2}$
$60 \sqrt{3}$
$30 \sqrt{2}$
$30 \sqrt{3}$
The coefficient of $x^8$ in the expansion of $(1 -x^4)^4 (1 + x)^5$ is :-
If ${x^4}$ occurs in the ${r^{th}}$ term in the expansion of ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$, then $r = $
The coefficient of ${x^5}$ in the expansion of ${(x + 3)^6}$ is
If the coefficients of $x^{7}$ and $x^{8}$ in the expansion of $\left(2+\frac{x}{3}\right)^{n}$ are equal, then the value of $n$ is equal to $.....$
If some three consecutive in the binomial expansion of ${\left( {x + 1} \right)^n}$ in powers of $x$ are in the ratio $2 : 15 : 70$, then the average of these three coefficient is