The coefficient of $\frac{1}{x}$ in the expansion of  ${\left( {1 + x} \right)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is :-

  • A

    $\frac{{n!}}{{(n - 1)!\left( {n + 1} \right)!}}$

  • B

    $\frac{{2n!}}{{(n - 1)!\left( {n + 1} \right)!}}$

  • C

    $\frac{{(2n)!}}{{(2n - 1)!\left( {2n + 1} \right)!}}$

  • D

    None of these

Similar Questions

In the expansion of ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$,the term independent of $x$ is

The coefficients of three successive terms in the expansion of ${(1 + x)^n}$ are $165, 330$ and $462$ respectively, then the value of n will be

In the expansion of ${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ term from the end is :-

If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$  is equal to $729$ , then possible value of $x$ is

Let $\alpha$ be the constant term in the binomial expansion of $\left(\sqrt{ x }-\frac{6}{ x ^{\frac{3}{2}}}\right)^{ n }, n \leq 15$. If the sum of the coefficients of the remaining terms in the expansion is $649$ and the coefficient of $x^{-n}$ is $\lambda \alpha$, then $\lambda$ is equal to $..........$.

  • [JEE MAIN 2023]