$(1- x )^{101}\left( x ^{2}+ x +1\right)^{100}$ के प्रसार में $x ^{256}$ का गुणांक है
${-}^{100} \mathrm{C}_{16}$
$^{100} \mathrm{C}_{16}$
$^{100} \mathrm{C}_{15}$
$-{ }^{100} \mathrm{C}_{15}$
$-{ }^{15} C _{1}+2 \cdot{ }^{15} C _{2}-3 \cdot{ }^{15} C _{3}+\ldots .-15 \cdot{ }^{15} C _{15}+{ }^{14} C _{1}+$ ${ }^{14} C _{3}+{ }^{14} C _{5}+\ldots .+{ }^{14} C _{11}$ का मान है
यदि $a$ तथा $d$ दो सम्मिश्र संख्यायें हों, तब $a\,{C_0} - (a + d)\,{C_1} + (a + 2d)\,{C_2} - ........ + .....$ के $(n + 1)$ पदों का योग है
${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा
यदि ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ के प्रसार में गुणांकों का योगफल $0$ है, तब $\alpha $ का मान है
माना $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(x+3)^{n-3} \cdot(x+2)^2+\ldots \ldots .+(x+2)^{n-1}$ के प्रसार में $x^r$ का गुणांक $\alpha_r$ है। यदि $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$ है, तो $\beta^2+\gamma^2$ बराबर है ........