7.Binomial Theorem
hard

$(1- x )^{101}\left( x ^{2}+ x +1\right)^{100}$ के प्रसार में $x ^{256}$ का गुणांक है 

A

${-}^{100} \mathrm{C}_{16}$

B

$^{100} \mathrm{C}_{16}$

C

$^{100} \mathrm{C}_{15}$

D

$-{ }^{100} \mathrm{C}_{15}$

(JEE MAIN-2021)

Solution

$y=(1-x)(1-x)^{100}\left(x^{2}+x+1\right)^{100}$

$y=(1-x)\left(x^{3}-1\right)^{100}$

$y=\left(x^{3}-1\right)^{100}-x\left(x^{3}-1\right)^{100}$

Coff. Of $x^{256}$ in $y=-$ coff of $x^{255}$ in $\left(x^{3}-1\right)^{100}$

$={ }^{-100} \mathrm{C}_{85}(-1)^{15}={ }^{100} \mathrm{C}_{15}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.