${(x + 3)^6}$ के विस्तार में ${x^5}$ का गुणांक होगा

  • A

    $18$

  • B

    $6$

  • C

    $12$

  • D

    $10$

Similar Questions

$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।

${(1 + x)^{43}}$ के विस्तार में $(2r + 1)$ वें पद और $(r + 2)$ वें पद के गुणांक बराबर हैं, तब $r$ का मान होगा

माना कि $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$, और $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$ हैं। तब निम्नलिखित कथनों में से कौन सा (से) सत्य है (हैं)?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, जहां $\phi$ रिक्त समुच्चय (empty set) को दर्शाता है।

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ किन्हीं दिये गए $a, b \in Z$ के लिए, $\cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ यदि और केवल यदि (if and only if) $b=0$, जहां $i=\sqrt{-1}$ है।

  • [IIT 2024]

यदि $A$ और $B$, ${(1 + x)^{2n}}$तथा ${(1 + x)^{2n - 1}}$ के विस्तारों में ${x^n}$ के गुणांक हैं, तब

माना कि $m$ ऐसा न्यूनतम धनात्मक पूर्णांक (smallest positive integer) है कि $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ के विस्तार में $x^2$ का गुणांक $(3 n+1)^{51} C_3$ किसी धनात्मक पूर्णांक $n$ के लिए है। तब $n$ का मान है

  • [IIT 2016]