यदि धनात्मक पूर्णांकों $r > 1,n > 2$ के लिए ${(1 + x)^{2n}} $ के विस्तार में $x$ की $(3r)$ वीं तथा $(r + 2)$ वीं घांतों के गुणांक समान हों, तब
$n = 2r$
$n = 3r$
$n = 2r + 1$
इनमें से कोई नहीं
यदि $A$ और $B$, ${(1 + x)^{2n}}$तथा ${(1 + x)^{2n - 1}}$ के विस्तारों में ${x^n}$ के गुणांक हैं, तब
यदि $\left(\mathrm{x}^{\frac{2}{3}}+\frac{\alpha}{\mathrm{x}^3}\right)^{22}$ के प्रसार में $\mathrm{x}$ से स्वतंत्र पद 7315 है, तो $|\alpha|$ बराबर है______________.
यदि ${(1 + x)^m}{(1 - x)^n}$ के प्रसार $(expansion)$ में $x$ और ${x^2}$ के गुणांक $(coefficient)$ क्रमश: $3$ और $-6$ हैं, तो $m =$
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है
$\left(1-x^2+3 x^3\right)\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}, x \neq 0$ के प्रसार में $x$ से स्वतंत्र पद है