The coefficient of ${x^4}$ in the expansion of ${(1 + x + {x^2} + {x^3})^n}$ is
$^n{C_4}$
$^n{C_4}{ + ^n}{C_2}$
$^n{C_4} + {\,^n}{C_2} + \,{\,^n}{C_4}{.^n}{C_2}$
$^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$
The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is
Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$
If $n$ is the degree of the polynomial,
${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ and $m$ is the coefficient of $x^{12}$ in it, then the ordered pair $(n, m)$ is equal to
If the coefficients of ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ terms of ${(1 + x)^{14}}$ are in $A.P.$, then $r =$
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$