7.Binomial Theorem
hard

${(1 + x + {x^2} + {x^3})^n}$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.

A

$^n{C_4}$

B

$^n{C_4}{ + ^n}{C_2}$

C

$^n{C_4} + {\,^n}{C_2} + \,{\,^n}{C_4}{.^n}{C_2}$

D

$^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$

Solution

(d) ${(1 + x + {x^2} + {x^3})^n} = \left\{ {{{(1 + x)}^n}{{(1 + {x^2})}^n}} \right\}$

$ = (1 + {\,^n}{C_1}x + {\,^n}{C_2}{x^2} + …. + {\,^n}{C_n}{x^n})$

$(1 + {\,^n}{C_1}{x^2} + {\,^n}{C_2}{x^4} + …. + {\,^n}{C_n}{x^{2n}})$

Therefore the coefficient of $x^4$ = $^n{C_2} + {\,^n}{C_2}.{\,^n}{C_1} + {\,^n}{C_4}$= $^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.