7.Binomial Theorem
hard

${(1 + x + {x^2} + {x^3})^n}$ के प्रसार मे ${x^4}$ का गुणांक है

A

$^n{C_4}$

B

$^n{C_4}{ + ^n}{C_2}$

C

$^n{C_4} + {\,^n}{C_2} + \,{\,^n}{C_4}{.^n}{C_2}$

D

$^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$

Solution

${(1 + x + {x^2} + {x^3})^n} = \{ {(1 + x)^n}(1 + {x^2})\} $

$ = (1 + {\,^n}{C_1}x + {\,^n}{C_2}{x^2} + …. + {\,^n}{C_n}{x^n})$

$(1 + {\,^n}{C_1}{x^2} + {\,^n}{C_2}{x^4} + …. + {\,^n}{C_n}{x^{2n}})$

अत: $x^4$ का गुणांक

= $^n{C_2} + {\,^n}{C_2}.{\,^n}{C_1} + {\,^n}{C_4}$= $^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.