- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
${(1 + x + {x^2} + {x^3})^n}$ के प्रसार मे ${x^4}$ का गुणांक है
A
$^n{C_4}$
B
$^n{C_4}{ + ^n}{C_2}$
C
$^n{C_4} + {\,^n}{C_2} + \,{\,^n}{C_4}{.^n}{C_2}$
D
$^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$
Solution
${(1 + x + {x^2} + {x^3})^n} = \{ {(1 + x)^n}(1 + {x^2})\} $
$ = (1 + {\,^n}{C_1}x + {\,^n}{C_2}{x^2} + …. + {\,^n}{C_n}{x^n})$
$(1 + {\,^n}{C_1}{x^2} + {\,^n}{C_2}{x^4} + …. + {\,^n}{C_n}{x^{2n}})$
अत: $x^4$ का गुणांक
= $^n{C_2} + {\,^n}{C_2}.{\,^n}{C_1} + {\,^n}{C_4}$= $^n{C_4} + {\,^n}{C_2} + {\,^n}{C_1}.{\,^n}{C_2}$
Standard 11
Mathematics