- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
જો બધા ધન પૂર્ણાંક $r> 1, n > 2$ માટે $( 1 + x)^{2n}$ ના વિસ્તરણમાં $x$ ની ઘાત $(3r)$ અને $(r + 2)$ ના સહગુણક સરખા હોય તો $n$ ની કિમત મેળવો.
A
$2r+ 1$
B
$2r- 1$
C
$3r$
D
$r+1$
(JEE MAIN-2013)
Solution
Expansion of $(1+x)^{2 n}$ is $1+^{2 n} C_{1} x+^{2 n} C_{2} x^{2}$
$+\ldots \ldots+^{2 n} C_{r} x^{r}+^{2 n} C_{r+1} x^{r+1}+\ldots \ldots+^{2 n} C_{2 n} x^{2 n}$
As given $^{2n}{{\text{C}}_{r + 2}}{ = ^{2n}}{{\text{C}}_{3r}}$
$ \Rightarrow \frac{{(2n)!}}{{(r + 2)!(2n – r – 2)!}} = \frac{{(2n)!}}{{(3r)!(2n – 3r)!}}$
$\Rightarrow(3 r) !(2 n-3 r) !=(r+2) !(2 n-r-2) !………(1)$
Now, put value of $n$ from the given choices.
Choice $(a)$ put $n=2 r+1$ in $(1)$
$LHS:$ $(3 r) !(4 r+2-3 r) !=(3 r) !(r+2) !$
$\mathrm{RHS}:(r+2) !(3 r) !$
$\Rightarrow \mathrm{LHS}=\mathrm{RHS}$
Standard 11
Mathematics