7.Binomial Theorem
normal

શ્રેણી $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ માં $x^{91}$ નો સહગુનક મેળવો 

A

$^{100}{C_{10}}({2^9})$

B

$^{100}{C_{10}}({2^9 - 3^9})$

C

$^{100}{C_{9}}({2^9 - 3^9})$

D

$^{100}{C_{9}}({3^9})$

Solution

coefficient of

${{\rm{x}}^{91}} =  – {{\rm{(}}^{100}}{{\rm{C}}_1} \cdot {2^8}{{\rm{.}}^{99}}{{\rm{C}}_{91}} +  \ldots . + {\,^{100}}{{\rm{C}}_9} \cdot {2^0}{{\rm{.}}^{91}}{{\rm{C}}_{91}})$

$ =  – \sum\limits_{r = 0}^8 {^{100}{C_{r + 1}}{{.2}^{\left( {8 – r} \right)}}{.^{99 – r}}{C_{91}}} $

$ =  – {2^9}{ \cdot ^{100}}{{\rm{C}}_9}\sum\limits_{r = 0}^8 {{\,^9}{C_{r + 1}}} {\left( {\frac{1}{2}} \right)^{r + 1}}$

$ = {\,^{100}}{{\rm{C}}_9}\left( {{2^9} – {3^9}} \right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.