7.Binomial Theorem
hard

The sum of the coefficients of three consecutive terms in the binomial expansion of $(1+ x )^{ n +2}$, which are in the ratio $1: 3: 5$, is equal to

A

$25$

B

$63$

C

$41$

D

$92$

(JEE MAIN-2023)

Solution

${ }^{n+2} C_{ r -1}:{ }^{n+2} C_{ r }:{ }^{ n +2} C _{ r +1}=1: 3: 5$

$\frac{{ }^{n+2} C_{ r -1}}{{ }^{ n +2} C _{ r }}=\frac{1}{3}$

$n =4 r -3 \ldots \ldots \text { (i) }$

$\frac{{ }^{n+2} C _{ r }}{{ }^{ n +2} C _{ r +1}}=\frac{3}{5}$

$8 r -1=3 n \text {…… (ii) }$

$\text { From, (i) and (ii) }$

$r =2 \text { and } n =5$

$\text { Required sum }=63$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.