The compound statement $(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) \Rightarrow((\sim P ) \wedge(\sim Q ))$ is equivalent to
$((\sim P ) \vee Q ) \wedge((\sim Q ) \vee P )$
$(\sim Q) \vee P$
$((\sim P ) \vee Q ) \wedge(\sim Q )$
$(\sim P ) \vee Q$
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is
The conditional $(p \wedge q) ==> p$ is
The negation of the compound proposition $p \vee (\sim p \vee q)$ is
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology
If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be: