The compound statement $(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) \Rightarrow((\sim P ) \wedge(\sim Q ))$ is equivalent to

  • [JEE MAIN 2023]
  • A

    $((\sim P ) \vee Q ) \wedge((\sim Q ) \vee P )$

  • B

    $(\sim Q) \vee P$

  • C

    $((\sim P ) \vee Q ) \wedge(\sim Q )$

  • D

    $(\sim P ) \vee Q$

Similar Questions

Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is

The conditional $(p \wedge q) ==> p$ is

The negation of the compound proposition $p \vee (\sim p \vee q)$ is

Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $

Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology

  • [AIEEE 2009]

If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:

  • [JEE MAIN 2021]