The conditional $(p \wedge q) ==> p$ is
A tautology
A fallacy $i.e.$, contradiction
Neither tautology nor fallacy
None of these
The Boolean expression $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ is equivalent to:
Which Venn diagram represent the truth of the statement“Some teenagers are not dreamers”
If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively
The statement $A \rightarrow( B \rightarrow A )$ is equivalent to
The Boolean expression $\sim\left( {p\; \vee q} \right) \vee \left( {\sim p \wedge q} \right)$ is equivalent ot :