The coordinates of a moving particle at any time $‘t’$ are given by $ x = \alpha t^3$ and $y = \beta t^3$. The speed of the particle at time $‘t’$ is given by
$\sqrt {{\alpha ^2} + {\beta ^2}} $
$3\,t\sqrt {{\alpha ^2} + {\beta ^2}} $
$3\,{t^2}\sqrt {{\alpha ^2} + {\beta ^2}} $
${t^2}\sqrt {{\alpha ^2} + {\beta ^2}} $
A particle moves in $x-y$ plane with velocity $\vec v = a\widehat i\, + \,bx\widehat j$ where $a$ & $b$ are constants. Initially particle was at origin then trajectory equation is:-
In the figure shown, the two projectiles are fired simultaneously. The minimum distance between them during their flight is ........ $m$
The position of a particle moving in the $xy-$plane at any time $t$ is given by $x = (3{t^2} - 6t)$ metres, $y = ({t^2} - 2t)$ metres. Select the correct statement about the moving particle from the following
The coordinates of a particle moving in a plane are given by $x = a\cos (pt)$ and $y(t) = b\sin (pt)$ where $a,\,\,b\,( < a)$ and $p$ are positive constants of appropriate dimensions. Then
A horizontal plane supports a stationary vertical cylinder of radius $R = 1\ m$ and a disc $A$ attached to the cylinder by a horizontal thread $AB$ of length $l_0 = 2\ m$ (seen in figure, top view). An intial velocity ($v_0 = 1\ m/s$) is imparted $AB$ to the disc as shown in figure. .......... $\sec$ long will it move along the plane until it strikes against the cylinder ? (All surface are assumed to be smooth)