- Home
- Standard 11
- Mathematics
Basic of Logarithms
hard
$9\sqrt 3 + 11\sqrt 2 $ નું ઘનમૂળ મેળવો.
A
$2\sqrt 3 + \sqrt 2 $
B
$\sqrt 3 + 2\sqrt 2 $
C
$3\sqrt 3 + \sqrt 2 $
D
$\sqrt 3 + \sqrt 2 $
Solution
(d) Let $x = {(9\sqrt 3 + 11\sqrt 2 )^{1/3}}$
$ \Rightarrow $${x^3} = 9\sqrt 3 + 11\sqrt 2 $
$ = 6\sqrt 3 + 3\sqrt 3 + 9\sqrt 2 + 2\sqrt 2 $
$ = 3\sqrt 3 + 2\sqrt 2 + 6\sqrt 3 + 9\sqrt 2 $
$ = 3\sqrt 3 + 2\sqrt 2 + 3(2\sqrt 3 + 3\sqrt 2 )$
$ = 3\sqrt 3 + 2\sqrt 2 + 3\sqrt 2 \,.\,\sqrt 3 (\sqrt 2 + \sqrt 3 )$
$ = {(\sqrt 3 )^3} + {(\sqrt 2 )^3} + 3.\sqrt 2 .\sqrt 2 \,(\sqrt 3 + \sqrt 2 ) = {(\sqrt 3 + \sqrt 2 )^3}$
So, ${x^3} = {(\sqrt 3 + \sqrt 2 )^3}$
$x = \sqrt 3 + \sqrt 2 $.
Standard 11
Mathematics