The cube root of $9\sqrt 3 + 11\sqrt 2 $ is

  • A

    $2\sqrt 3 + \sqrt 2 $

  • B

    $\sqrt 3 + 2\sqrt 2 $

  • C

    $3\sqrt 3 + \sqrt 2 $

  • D

    $\sqrt 3 + \sqrt 2 $

Similar Questions

${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $

Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.

Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$

If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$

The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17}  $ is