સમીકરણ ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$ નો ઉકેલ મેળવો.

  • A

    ${\log _9}(9/\sqrt 8 )$

  • B

    ${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$

  • C

    ${\log _e}(9/\sqrt 8 )$

  • D

    એકપણ નહીં

Similar Questions

${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $

${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $

જો $x + \sqrt {({x^2} + 1)} = a,$ તો $x =$