સમીકરણ ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$ નો ઉકેલ મેળવો.
${\log _9}(9/\sqrt 8 )$
${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$
${\log _e}(9/\sqrt 8 )$
એકપણ નહીં
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
જો $x + \sqrt {({x^2} + 1)} = a,$ તો $x =$