लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The data is obtained in tabular form as follows.

${x_i}$ ${f_i}$ ${f_i} = \frac{{{x_i} - 64}}{1}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$60$ $2$ $-4$ $16$ $-8$ $32$
$61$ $1$ $-3$ $9$ $-3$ $9$
$62$ $12$ $-2$ $4$ $-24$ $48$
$63$ $29$ $-1$ $1$ $-29$ $29$
$64$ $25$ $0$ $0$ $0$ $0$
$65$ $12$ $1$ $1$ $12$ $12$
$66$ $10$ $2$ $4$ $20$ $40$
$67$ $4$ $3$ $9$ $12$ $36$
$68$ $5$ $4$ $16$ $20$ $80$
  $100$ $220$   $0$ $286$

Mean, $\bar x = A\frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h = 64 + \frac{0}{{100}} \times 1 = 64 + 0 = 64$

Variance,   ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - \left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}^2} } \right)} } \right]$

$=\frac{1}{100^{2}}[100 \times 286-0]$

$=2.86$

$\therefore$ Standard deviation $(\sigma)=\sqrt{2.86}=1.69$

Similar Questions

$100$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $20$ और $3$ हैं। बाद में यह पाया गया कि तीन प्रेक्षण $21,21$ तथा $18$ गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।

$15$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $8$ और $3$ पाया गया है। इसकी पुन जॉच करने पर यह पाया गया की, प्रेक्षणों में 20 को 5 के रूप में गलत पड़ा गया था, तब सही प्रसरण बराबर है -

  • [JEE MAIN 2022]

माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है

  • [JEE MAIN 2021]

संख्याओं $1, 2, 3, 4, 5, 6$ का माध्य तथा मानक विचलन है

माना एक चर $x$ द्वारा लिये गये मान इस प्रकार हैं, कि $a \le {x_i} \le b$ जहाँ ${x_i}$, $i = 1,2, …. n$ के लिये $i$ वीं स्थिति में $x$ का मान प्रदर्शित करता है