$40$ प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $30$ तथा $5$ हैं। यह पाया गया कि इनमें से दो प्रेक्षण $12$ तथा $10$ गलती से लिखे गए। यदि गलती से लिखे दो प्रेक्षणों को हटाने के पश्चात् शेष आकड़ों का मानक विचलन $\sigma$ है, तो $38 \sigma^2$ बराबर है $...........$
$238$
$239$
$240$
$241$
माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है
छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
यदि $50$ प्रेक्षणों $x _{1}, x _{2} \ldots, x _{50}$ का माध्य तथा मानक विचलन दोनों $16$ है, तो $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots \cdots$ $\left( x _{50}-4\right)^{2}$ का माध्य है
यदि आंकडों $65,68,58,44,48,45,60, \alpha, \beta, 60$ जहाँ $\alpha>\beta$ है, के माध्य तथा प्रसरण क्रमशः $56$ तथा $66.2$ है, तो $\alpha^2+\beta^2$ बराबर है ................
माना $a_1$ के सभी मानों, जिनके लिए $100$ क्रमागत धनात्मक पूर्णांको $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots ., \mathrm{a}_{100}$ का माध्य के सापेक्ष माध्य विचलन $25$ है, का समुच्चय $\mathrm{S}$ है, तब $\mathrm{S}$ बराबर है।