- Home
- Standard 11
- Mathematics
13.Statistics
hard
$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि पाँच क्रमशः प्रेक्षण $2,4,10,12,14$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अंतर है
A
$2$
B
$4$
C
$3$
D
$1$
(JEE MAIN-2020)
Solution
$\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$x+y=14$
$(\sigma)^{2}=\frac{\sum\left( x _{ i }\right)^{2}}{ n }-\left(\frac{\sum x _{ i }}{ n }\right)^{2}$
$16=\frac{4+16+100+144+196+x^{2}+y^{2}}{7}-8^{2}$
$16+64=\frac{460+x^{2}+y^{2}}{7}$
$560=460+x^{2}+y^{2}$
$x^{2}+y^{2}=100$ (ii)
Clearly by (i) and (ii), $|x-y|=2$
Standard 11
Mathematics
Similar Questions
माना आंकडो
$X$ | $1$ | $3$ | $5$ | $7$ | $9$ |
$(f)$ | $4$ | $24$ | $28$ | $\alpha$ | $8$ |
का माध्य 5 है। यदि इन आंकडों के माध्य के सापेक्ष माध्य विचलन तथा प्रसरण क्रमशः $m$ तथा $\sigma^2$ हैं, तो $\frac{3 \alpha}{m+\sigma^2}$ बराबर है________