If $\left| {\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&x&{{x^2}}\\{{b^2}}&{ab}&{{a^2}} \end{array}} \right|$ $= 0$ , then :

  • A

    $x = a$

  • B

    $x = b$

  • C

    $x = \frac{a}{b}$

  • D

    both $(A)$ and $(C)$

Similar Questions

Value of $\left| {\begin{array}{*{20}{c}}
  {{{(b + c)}^2}}&{{a^2}}&{{a^2}} \\ 
  {{b^2}}&{{{(a + c)}^2}}&{{b^2}} \\ 
  {{c^2}}&{{c^2}}&{{{(a + b)}^2}} 
\end{array}} \right|$ is equal to

If $\mathrm{a, b, c}$ are in $\mathrm{A.P}$, find value of

$\left|\begin{array}{ccc}
2 y+4 & 5 y+7 & 8 y+a \\
3 y+5 & 6 y+8 & 9 y+b \\
4 y+6 & 7 y+9 & 10 y+c
\end{array}\right|$

Evaluate $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$

If $a,b,c$ are unequal what is the condition that the value of the following determinant is zero $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|$

  • [IIT 1985]

$\left| {\,\begin{array}{*{20}{c}}{{b^2} + {c^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{c^2} + {a^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{a^2} + {b^2}}\end{array}\,} \right| = $

  • [IIT 1980]