If $\left| {\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&x&{{x^2}}\\{{b^2}}&{ab}&{{a^2}} \end{array}} \right|$ $= 0$ , then :
$x = a$
$x = b$
$x = \frac{a}{b}$
both $(A)$ and $(C)$
Value of $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{{{(a + c)}^2}}&{{b^2}} \\
{{c^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|$ is equal to
If $\mathrm{a, b, c}$ are in $\mathrm{A.P}$, find value of
$\left|\begin{array}{ccc}
2 y+4 & 5 y+7 & 8 y+a \\
3 y+5 & 6 y+8 & 9 y+b \\
4 y+6 & 7 y+9 & 10 y+c
\end{array}\right|$
Evaluate $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$
If $a,b,c$ are unequal what is the condition that the value of the following determinant is zero $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}{{b^2} + {c^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{c^2} + {a^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{a^2} + {b^2}}\end{array}\,} \right| = $