अतिपरवलय $9{x^2} - 16{y^2} = 144$ पर स्थित किसी बिन्दु की नाभीय दूरियों का अन्तर है
$8$
$7$
$6$
$4$
अतिपरवलय $H : x ^2- y ^2=1$ तथा दीर्घवृत $E : \frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1, a > b > 0$ के लिए, माना
$(1)$ $E$ की उत्केन्द्रता, $H$ की उत्केन्द्रता की व्युत्क्रमणीय हैं, तथा
$(2)$ रेखा $y =\sqrt{\frac{5}{2}} x + K , E$ तथा $H$ की एक उभयनिष्ठ स्पर्श रेखा है।
तब $4\left( a ^2+ b ^2\right)$ बराबर है
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(0,±13),$ संयुग्मी अक्ष की लंबाई $24$ है।
माना $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1, a >0, b >0$ एक अतिपरवलय इस प्रकार है कि अनुप्रस्थ तथा संयुग्मी अक्षों की लम्बाईयों का योगफल $4(2 \sqrt{2}+\sqrt{14})$ है। यदि अतिपरवलय $H$ की उत्केन्द्रता $\frac{\sqrt{11}}{2}$ है, तो $a ^2+ b ^2$ का मान है $...........$
अतिपरवलय $2{x^2} + 5xy + 2{y^2} + 4x + 5y = 0$ की अनन्तस्पर्शियों का संयुक्त समीकरण है
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(0,\pm 5),$ नाभियाँ $(0,±8)$