$\frac{\mathrm{B}^{2}}{2 \mu_{0}}$ નું પારિમાણ શું થાય?
જ્યાં $\mathrm{B}$ એ ચુંબકીયક્ષેત્ર અને $\mu_{0}$ એ શૂન્યાવકાશની ચુંબકીય પરમીએબીલીટી છે.
$M L^{-1} T^{-2}$
$\mathrm{ML}^{2} \mathrm{T}^{-1}$
$\mathrm{ML} \mathrm{T}^{-2}$
$\mathrm{ML}^{2} \mathrm{T}^{-2}$
$t$ સમયે કણનું સ્થાન $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$ દ્વારા આપી શકાય છે, જ્યાં ${v_0}$ એ અચળાંક છે અને $\alpha > 0$. તો ${v_0}$ અને $\alpha $ ના પરિમાણ અનુક્રમે ............ થાય.
રાશિ $x$ ને $\left( IF v^{2} / WL ^{4}\right)$ વડે દર્શાવવામાં આવે છે જ્યાં $I$ એ જડત્વની ચાકમાત્રા, $F$ બળ, $v$ વેગ, $W$ કાર્ય અને $L$ લંબાઇ છે. તો $x$ નું પારિમાણિક સૂત્ર નીચે પૈકી કોને સમાન હશે?
$A, B, C$ અને $D$ એ ચાર અલગ અલગ પરિમાણ ધરાવતી અલગ અલગ ભૌતિક રાશિઓ છે. તે પૈકી કોઈપણ પરિમાણરહિત નથી, પરંતુ $AD = C\, ln\, (BD)$ સૂત્ર સાચું છે. તો નીચે પૈકી કયો સંબંધ નિરર્થક રાશી છે?
જો $A$ અને $B$ ના પરિમાણિક સૂત્ર સમાન ના હોય તો નીચેનમનથી કઈ વસ્તુ શક્ય નથી?