The dimensions of inter atomic force constant are
$M{T^{ - 2}}$
$ML{T^{ - 1}}$
$ML{T^{ - 2}}$
$M{L^{ - 1}}{T^{ - 1}}$
If ${E}, {L}, {m}$ and ${G}$ denote the quantities as energy, angular momentum, mass and constant of gravitation respectively, then the dimensions of ${P}$ in the formula ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ are
Which one of the following does not have the same dimensions
The electrical resistance $R$ of a conductor of length $l$ and area of cross section $a$ is given by $R = \frac{{\rho l}}{a}$ where $\rho$ is the electrical resistivity. What a is the dimensional formula for electrical conductivity $\sigma $ which is reciprocal of resistivity?
The frequency of vibration of string is given by $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$. Here $p$ is number of segments in the string and $l$ is the length. The dimensional formula for $m$ will be
Which of the following equations is dimensionally incorrect?
Where $t=$ time, $h=$ height, $s=$ surface tension, $\theta=$ angle, $\rho=$ density, $a, r=$ radius, $g=$ acceleration due to gravity, ${v}=$ volume, ${p}=$ pressure, ${W}=$ work done, $\Gamma=$ torque, $\varepsilon=$ permittivity, ${E}=$ electric field, ${J}=$ current density, ${L}=$ length.