अंतराणविक बल नियतांक की विमा होगी
$M{T^{ - 2}}$
$ML{T^{ - 1}}$
$ML{T^{ - 2}}$
$M{L^{ - 1}}{T^{ - 1}}$
निम्न में से किस युग्म की विमायें परस्पर समान नहीं हैं
विधुतचुम्बकीय सिद्धांत के अनुसार विद्युत् और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि [ $\left.\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुटांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ SI मात्रकों (units) में दी गयी हैं ।
($1$) $[E]$ और $[B]$ के बीच में संबंध है
$(A)$ $[ E ]=[ B ][ L ][ T ]$ $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$ $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$ $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$
($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है
$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$ $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$ $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$ $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
यदि गति $( V )$, त्वरण $( A )$ तथा बल $( F )$ को मूल भौतिक इकाइयाँ मानें तो, यंग प्रत्यास्थता गुणांक की विमा होगी।
$A, B, C$ तथा $D$ चार भिन्न मात्राएँ हैं जिनकी विमाएं भिन्न हैं। कोई भी मात्रा विमा-रहित मात्रा नहीं हैं, लेकिन $A D=C \ln (B D)$ सत्य है। तब निम्न में से कौन आशय-रहित मात्रा है ?
$\frac{1}{{\sqrt {{\varepsilon _0}{\mu _0}} }}$की विमा निम्न में से बराबर है