शक्ति की विमायें है
${M^1}{L^2}{T^{ - 3}}$
${M^2}{L^1}{T^{ - 2}}$
${M^1}{L^2}{T^{ - 1}}$
${M^1}{L^1}{T^{ - 2}}$
प्लांक स्थिरांक एवं जड़त्व-आघूर्ण की विमा का अनुपात किस राशि की विमा के तुल्य है
एक ट्यूब की लम्बाई $\ell$ तथा त्रिज्या $r$ है। इसमें टॉरपीन का तेल बहता है। ट्यूब के दोनों सिरों का दाबान्तर $p$ है तथा श्यानता गुणांक है
$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$
जहाँ ट्यूब के अक्ष से $x$ दूरी पर तेल का वेग $v$ है। $\eta$ की विमायें हैं
व्यंजक$\left[ {M{L^2}{T^{ - 2}}} \right]$ प्रदर्शित करता है
कभी-कभी मात्रकों की एक पद्धति का निर्माण करना सुविधाजनक होता है ताकि सभी राशियों को केवल एक भौतिक राशि के पदों में व्यक्त किया जा सके। इस प्रकार की पद्धति में, विभिन्न राशियों की विमाओं को राशि $X$ के पदों में निम्नानुसार दिया गया है: $[$ स्थिति $]=\left[ X ^{ \alpha }\right]$; [चाल $]=\left[ X ^\beta\right]$; [त्वरण $]=\left[ X ^{ p }\right]$; [रेखीय संवेग $]=\left[ X ^{ q }\right] ;[$ बल $]=\left[ X ^{ R }\right]$ । तब
$(A)$ $\alpha+ p =2 \beta$
$(B)$ $p + q - r =\beta$
$(C)$ $p - q + r =\alpha$
$(D)$ $p+q+r=\beta$
विद्युत विभव की विमा होगी