- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
The dimensions of the product $\mu_{0} \varepsilon_{0}$ are related to those of velocity as
A$(velocity)^2$
B$velocity$
C$1/velocity$
D$1/(velocity)^2$
Solution
$C=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
$\mu_{0} \varepsilon_{0}=\frac{1}{\mathrm{C}^{2}}=\frac{1}{(\mathrm{velocity})^{2}}$
$\mu_{0} \varepsilon_{0}=\frac{1}{\mathrm{C}^{2}}=\frac{1}{(\mathrm{velocity})^{2}}$
Standard 11
Physics
Similar Questions
Match List$-I$ with List$-II$.
List$-I$ | List$-II$ |
$(A)$ Angular momentum | $(I)$ $\left[ ML ^2 T ^{-2}\right]$ |
$(B)$ Torque | $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$ |
$(C)$ Stress | $(III)$ $\left[ ML ^2 T ^{-1}\right]$ |
$(D)$ Pressure gradient | $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$ |