The dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}}$. The $pH$ of $0.1$ molar solution of the acid will be
$5$
$4$
$3$
$1$
$pH$ of an aqueous solution $H_2CO_3$ is $3.3$. If ${K_{{a_1}}} = {10^{ - 3}}$and ${K_{{a_2}}} = {10^{ - 13}}$ then $[HCO_3^-]$ is
A monoprotic acid in a $0.1\,\,M$ solution ionizes to $0.001\%$. Its ionisation constant is
The $pH$ of a $0.1\ M$ aqueous solution of a very weak acid $(HA)$ is $3$. What is its degree of dissociation ?......$\%$
Calculate $pH$ of $0.02$ $mL$ $ClC{H_2}COOH$. Its ${K_a} = 1.36 \times {10^{ - 3}}$ calculate its $pK_{b}$,
Dimethyl amine ${\left( {C{H_3}} \right)_2}NH$ is weak base and its ionization constant $ 5.4 \times {10^{ - 5}}$. Calculate $\left[ {O{H^ - }} \right],\left[ {{H_3}O} \right]$, $pOH$ and $pH$ of its $0.2$ $M$ solution at equilibrium.