The dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}}$. The $pH$ of $0.1$ molar solution of the acid will be
$5$
$4$
$3$
$1$
The ${K_b}$ of ammonia is $1.8 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate the $pH$ of $0.1$ $M$ solution.
What is the $ pH$ of $0.01\, M$ glycine solution? For glycine, $K{a_1} = 4.5 \times {10^{ - 3}}$ and $K{a_2} = 1.7 \times {10^{ - 10}}$ at $298 \,K$
At $25\,^o C$, the dissociation constant of a base $BOH$ is $1.0 \times {10^{ - 12}}$. The concentration of Hydroxyl ions in $0.01\, M$ aqueous solution of the base would be
The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-4}$. The $\mathrm{pH}$ of a $0.01 \ \mathrm{M}$ solution of its sodium salt is
When $CO_2$ dissolves in water, the following equilibrium is established
$C{O_2} + 2{H_2}O\, \rightleftharpoons {H_3}{O^ + } + HCO_3^ - $
for which the equilibrium constant is $3.8 \times 10^{-7}$ and $pH = 6.0$. The ratio of $[HCO_3^- ]$ to $[CO_2]$ would be :-