The domain of $f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ is (where $[.]$ denotes $G.I.F.$)

  • A

    $R$

  • B

    $R -\{1\}$

  • C

    $R -(1, 2)$

  • D

    $R -[1, 2)$

Similar Questions

Let $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ then

$f(x,\;y) = \frac{1}{{x + y}}$ is a homogeneous function of degree

If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is

The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is

The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is

  • [KVPY 2012]