$f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ નો પ્રદેશગણ ....... થાય (જ્યા $[.]$ = $G.I.F.$)
$R$
$R -\{1\}$
$R -(1, 2)$
$R -[1, 2)$
જો $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, તો $(f + g)\left( {\frac{\pi }{3}} \right) = $
વિધેય $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ નિ મહત્તમ કિમત ......... થાય.
જો વિધેય $f(x){ = ^{9 - x}}{C_{x - 1}}$ ના પ્રદેશગણ અને વિસ્તારગણમા અનુક્ર્મે $m$ અને $n$ સભ્યો હોય તો
વિધેય $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ નુ આવર્તમાન મેળવો, ( જ્યા $[.]$ એ મહત્તમ પુર્ણાક વિધેય છે.)
વિધેય $f : R \rightarrow R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ નો વિસ્તારગણ ...... છે