Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$
$3241$
$3242$
$3243$
$3240$
The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-
If $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, for what value of $\alpha $ is $f(f(x)) = x$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is
If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$