The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set

  • A

    {$2, 3$}

  • B

    {$2, 3, 4$}

  • C

    {$1, 2, 3, 4$}

  • D

    {$1, 2, 3, 4, 5$}

Similar Questions

Which of the following is correct

If $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, then $f(y) = $

Let $f(\theta ) = \sin \theta (\sin \theta + \sin 3\theta )$, then $f(\theta )$

  • [IIT 2000]

Let $f, g: N -\{1\} \rightarrow N$ be functions defined by $f(a)=\alpha$, where $\alpha$ is the maximum of the powers of those primes $p$ such that $p^{\alpha}$ divides $a$, and $g(a)=a+1$, for all $a \in N -\{1\}$. Then, the function $f+ g$ is.

  • [JEE MAIN 2022]

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function which satisfies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R} .$ If $\mathrm{f}(1)=2$ and $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ then the value of $n,$ for which $\mathrm{g}(\mathrm{n})=20,$ is 

  • [JEE MAIN 2020]