फलन $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$ का डोमेन (प्रान्त) जहाँ प्रतीकों के सामान्य अर्थ हैं, है

  • A

    {$2, 3$}

  • B

    {$2, 3, 4$}

  • C

    {$1, 2, 3, 4$}

  • D

    {$1, 2, 3, 4, 5$}

Similar Questions

यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|

  • [JEE MAIN 2023]

मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है

$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\

0 & \text { if } x=0\end{array}\right.$

तब $x=0$ पर $f$

  • [KVPY 2019]

माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:

  • [JEE MAIN 2017]

यादि $f(x) = \cos (\log x)$, तब  $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]

माना कि एक फलन $f: R \rightarrow R$ सभी $x , y \in R$ के लिए $f( x + y )=f( x ) f( y )$ को संतुष्ट करता है तथा $f(1)=3$ है। यदि $\sum_{i=1}^{ n } f( i )=363$, तो $n$ बराबर है

  • [JEE MAIN 2020]