5.Magnetism and Matter
medium

विषुवत रेखा पर पृथ्वी के चुंबकीय क्षेत्र का परिमाण लगभग $0.4\, G$ है। पृथ्वी के चुंबक के द्विध्रुव आधूर्ण की गणना कीजिए।

A

$5.67 \times 10^{20}\; A m ^{2}$

B

$1.38 \times 10^{22}\; A m ^{2}$

C

$6.022 \times 10^{24}\; A m ^{2}$

D

$1.05 \times 10^{23}\; A m ^{2}$

Solution

the equatorial magnetic field is,

$B_{E}=\frac{\mu_{0} m}{4 \pi r^{3}}$

We are given that $B_{E} \sim 0.4 G =4 \times 10^{-5} T .$

For $r,$ we take the radius of the earth $6.4 \times 10^{6} m .$ Hence,

$m=\frac{4 \times 10^{-5} \times\left(6.4 \times 10^{6}\right)^{3}}{\mu_{0} / 4 \pi}$$=4 \times 10^{2} \times\left(6.4 \times 10^{6}\right)^{3} \;\;\left(\mu_{0} / 4 \pi=10^{-7}\right)$

$=1.05 \times 10^{23} Am ^{2}$

This is close to the value $8 \times 10^{22}\; A m ^{2}$ quoted in geomagnetic texts.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.