10-2. Parabola, Ellipse, Hyperbola
hard

The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$ . If one of its directices is $x = - 4$ then the equation of the normal to it at $\left( {1,\frac{3}{2}} \right)$ is

A

$x + 2y = 4$

B

$2y - x = 2$

C

$4x - 2y = 1$

D

$4x + 2y = 7$

(JEE MAIN-2017)

Solution

Eccentricity of ellipse $ = \frac{1}{2}$

Now, $ – \frac{a}{e} =  – 4 \Rightarrow a = 4 \times \frac{1}{2} = 2 \Rightarrow a = 2$

we have ${b^2} = {a^2}\left( {1 – {e^2}} \right) = {a^2}\left( {1 – \frac{1}{4}} \right) = 4 \times \frac{3}{4} = 3$

$\therefore $ Equation of ellipse 

$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1$

Now differentiating, we get 

$ \Rightarrow \frac{x}{2} + \frac{{2y}}{3} \times y' = 0 \Rightarrow y' =  – \frac{{3x}}{{4y}}$

$y'\left| {_{\left( {1,3/2} \right)}} \right| =  – \frac{3}{4} \times \frac{2}{3} =  – \frac{1}{2}$

Slope of normal $=2$

$\therefore $ Equation of normal at $\left( {1,\frac{3}{2}} \right)$ is

$y – \frac{3}{2} = 2\left( {x – 1} \right) \Rightarrow 2y – 4x – 4$

$\therefore 4x – 2y = 1$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.