Find the coordinates of the foci and the vertices, the eccentricity,the length of the latus rectum of the hyperbolas : $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Comparing the equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ with the standard equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Here, $a=3,\,\, b=4$ and $c=\sqrt{a^{2}+b^{2}}=\sqrt{9+16}=5$

Therefore, the coordinates of the foci are $(±5,\,0)$ and that of vertices are $(\pm 3,\,0) .$ Also,

The eccentricity $e=\frac{c}{a}=\frac{5}{3} .$

The latus rectum $=\frac{2 b^{2}}{a}=\frac{32}{3}$

Similar Questions

The equation of the transverse and conjugate axis of the hyperbola $16{x^2} - {y^2} + 64x + 4y + 44 = 0$ are

If the vertices of a hyperbola be at $(-2, 0)$ and $(2, 0)$ and one of its foci be at $(-3, 0)$, then which one of the following points does not lie on this hyperbola?

  • [JEE MAIN 2019]

If area of quadrilateral formed by tangents  drawn at ends of latus rectum of hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is equal to square of distance between centre and one  focus of hyperbola, then $e^3$ is ($e$ is eccentricity of hyperbola)

Let $a$ and $b$ be positive real numbers such that $a > 1$ and $b < a$. Let $P$ be a point in the first quadrant that lies on the hyperbola $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$. Suppose the tangent to the hyperbola at $P$ passes through the point $(1,0)$, and suppose the normal to the hyperbola at $P$ cuts off equal intercepts on the coordinate axes. Let $\Delta$ denote the area of the triangle formed by the tangent at $P$, the normal at $P$ and the $x$-axis. If $e$ denotes the eccentricity of the hyperbola, then which of the following statements is/are $TRUE$?

$(A)$ $1 < e < \sqrt{2}$

$(B)$ $\sqrt{2} < e < 2$

$(C)$ $\Delta=a^4$

$(D)$ $\Delta=b^4$

  • [IIT 2020]

The equation of the hyperbola whose foci are the foci of the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1$ and the eccentricity is $2$, is