अतिपरवलय $4{x^2} - 9{y^2} = 16$ की उत्केन्द्रता है
$\frac{8}{3}$
$\frac{5}{4}$
$\frac{{\sqrt {13} }}{3}$
$\frac{4}{3}$
एक अतिपरवलय, जिसका अनुप्रस्थ अक्ष शांकव $\frac{x^{2}}{3}+\frac{y^{2}}{4}=4$ के दीर्घ अक्ष की दिशा में है तथा जिसके शीर्ष इस शांकव की नाभियों पर है। यदि अतिपरवलय की उत्केन्द्रता $\frac{3}{2}$ है, तो निम्न में से कौन सा बिंदु इस पर स्थित नहीं है ?
माना अतिपरवलय $a^2 x^2-y^2=b^2$ की स्पर्श रेखा $\lambda x -2 y =\mu$ है। तब $\left(\frac{\lambda}{ a }\right)^2-\left(\frac{\mu}{ b }\right)^2$ बराबर है:
यदि अतिपरवलय $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(2\sec \phi ,\;3\tan \phi )$ पर स्पर्श $3x - y + 4 = 0$ के समान्तर है, तब $f$ का मान ............. $^o$ है
रेखा $x + 3y = 2$ के लम्बवत् शांकव $3{x^2} - {y^2} = 3$ की स्पर्श रेखाओं का समीकरण है
माना अतिपरवलय $2 x ^{2}- y ^{2}=2$ पर दो बिन्दु $A (\sec \theta, 2 \tan \theta)$ तथा $B (\sec \phi, 2 \tan \phi)$ हैं जिनके लिए $\theta+\phi=\pi / 2$ है। यदि $A$ तथा $B$ पर अतिपरवलय के अभिलंबों का प्रतिच्छेदन बिन्दु $(\alpha, \beta)$ है, तो $(2 \beta)^{2}$ बराबर है ......... |