The eccentricity of the hyperbola can never be equal to
$\sqrt {\frac{9}{5}} $
$2\sqrt {\frac{1}{9}} $
$3\sqrt {\frac{1}{8}} $
$2$
The graph of the conic $ x^2 - (y - 1)^2 = 1$ has one tangent line with positive slope that passes through the origin. the point of tangency being $(a, b). $ Then Length of the latus rectum of the conic is
A tangent to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{2} = 1$ meets $x-$ axis at $P$ and $y-$ axis at $Q$. Lines $PR$ and $QR$ are drawn such that $OPRQ$ is a rectangle (where $O$ is the origin). Then $R$ lies on
The line $lx + my + n = 0$ will be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
Let $e_1$ be the eccentricity of the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ and $e_2$ be the eccentricity of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$, which passes through the foci of the hyperbola. If $e_1 e_2=1$, then the length of the chord of the ellipse parallel to the $\mathrm{x}$-axis and passing through $(0,2)$ is :
Eccentricity of rectangular hyperbola is