Tangents are drawn to the hyperbola $4{x^2} - {y^2} = 36$ at the points $P$ and $Q.$ If these tangents intersect at the point $T(0,3)$ then the area (in sq. units) of $\Delta PTQ$ is :

  • [JEE MAIN 2018]
  • A

    $54\sqrt 3 $

  • B

    $60\sqrt 3 $

  • C

    $36\sqrt 5 $

  • D

    $45$$\sqrt 5 $

Similar Questions

Let $a$ and $b$ be positive real numbers such that $a > 1$ and $b < a$. Let $P$ be a point in the first quadrant that lies on the hyperbola $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$. Suppose the tangent to the hyperbola at $P$ passes through the point $(1,0)$, and suppose the normal to the hyperbola at $P$ cuts off equal intercepts on the coordinate axes. Let $\Delta$ denote the area of the triangle formed by the tangent at $P$, the normal at $P$ and the $x$-axis. If $e$ denotes the eccentricity of the hyperbola, then which of the following statements is/are $TRUE$?

$(A)$ $1 < e < \sqrt{2}$

$(B)$ $\sqrt{2} < e < 2$

$(C)$ $\Delta=a^4$

$(D)$ $\Delta=b^4$

  • [IIT 2020]

Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to

  • [JEE MAIN 2022]

The equation of the common tangent to the curves $y^2 = 8x$ and $xy = -1$ is

Let the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}- y ^{2}=1$ and the ellipse $E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of $H$ is equal to the length of latus rectum of $E$. If $e_{ H }$ and $e_{ E }$ are the eccentricities of $H$ and $E$ respectively, then the value of $12\left( e _{ H }^{2}+ e _{ E }^{2}\right)$ is equal to

  • [JEE MAIN 2022]

The equation of the normal at the point $(6, 4)$ on the hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 3$, is