- Home
- Standard 11
- Mathematics
The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $\mathrm{x}= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} \mathrm{x}+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_0, \mathrm{y}_0\right)$. If $\mathrm{m}$ is the product of the focal distances of the point $\left(\mathrm{x}_0, \mathrm{y}_0\right)$, then $4 \mathrm{e}^2+\mathrm{m}$ is equal to ...........
$72$
$61$
$42$
$13$
Solution
Given $\frac{2 \mathrm{~b}^2}{\mathrm{a}}=9$ and $\frac{\mathrm{a}}{\mathrm{e}}= \pm \frac{4}{\sqrt{3}}$
equation of tangent $y-\sqrt{3} x+\sqrt{3}=0$
by equation of tangent
Let slope $=\mathrm{S}=\sqrt{3}$
Constant $=-\sqrt{3}$
By condition of tangency
$ \Rightarrow 6=6 \mathrm{a}^2-9 \mathrm{a} $
$ \Rightarrow \mathrm{a}=2, \mathrm{~b}^2=9$
Equation of Hyperbola is
$\frac{x^2}{4}-\frac{y^2}{9}=1$ and for tangent
Point of contact is $(4,3 \sqrt{3})=\left(\mathrm{x}_0, \mathrm{y}_0\right)$
Now $\mathrm{e}=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2}$
Again product of focal distances
$\mathrm{m}=\left(\mathrm{x}_0 \mathrm{e}\right. $$ +\mathrm{a})\left(\mathrm{x}_0 \mathrm{e}-\mathrm{a}\right) $
$\mathrm{m}+4 \mathrm{e}^2 $$ =20 \mathrm{e}^2-\mathrm{a}^2 $
$ =20 \times \frac{13}{4}-4=61$
(There is a printing mistake in the equation of directrix $x= \pm \frac{4}{\sqrt{3}}$.
Corrected equation is $\mathrm{x}= \pm \frac{4}{\sqrt{13}}$ for directrix, as eccentricity must be greater than one, so question must be bonus)