$R$ त्रिज्या के किसी आवेशित चालक गोलीय कोश (खोल) के केन्द्र से $\frac{3 R}{2}$ दूरी पर विधुत क्षेत्र $E$ है। इसके केन्द्र से $\frac{R}{2}$ दूरी पर विधुत क्षेत्र होगा।

  • [AIPMT 2010]
  • A

    $\frac{E}{2}$

  • B

    $E$

  • C

    $\frac{E}{3}$

  • D

    शून्य

Similar Questions

एक $‘R’$ त्रिज्या के ठोस गोले पर एकसमान रूप से आवेश वितरित है। विद्युत क्षेत्र $‘E’$ तथा गोले के केन्द्र से दूरी $‘r’$ के बीच क्या सम्बन्ध है ( r , R से कम है )

एक गोलीय सममिति में वितरित आवेश के परिवर्तनशील आवेश घनत्व को निम्न समीकरण द्वारा निरूपित किया गया है।

$\rho(r)=\left\{\begin{array}{ll}\rho_0\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$

जहाँ, $r ( r < R )$ केन्द्र $O$ से दूरी है, (चित्र में दर्शाये अनुसार) $P$ बिन्दू पर विद्युत क्षेत्र का मान होगा :

  • [JEE MAIN 2022]

वैद्युत क्षेत्र ${r^o}$ के साथ परिवर्तित होता है

माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें

  • [JEE MAIN 2023]

संलग्न चित्र में दर्शाए गए तीन पराविधुत (dielectric) गोलो पर, जिनकी त्रिज्याऐं क्रमशः $R / 2, R$ तथा $2 R$ है, आवेश $Q, 2 Q$ तथा $4 Q$ क्रमशः समान रूप से वितरित है। यदि बिन्दु $P$, जो प्रत्येक गोले के केन्द्र से $R$ दूरी पर है, पर गोले $1,2$ तथा $3$ के कारण विधुत क्षेत्र का परिमाण क्रमशः $E _1, E _2$ तथा $E _3$ है तब

  • [IIT 2014]