8.Electromagnetic waves
hard

The electric field of a plane polarized electromagnetic wave in free space at time $t = 0$ is given by an expression

$\vec E(x,y) = 10\hat j\, cos[(6x + 8z)]$

The magnetic field $\vec B (x,z, t)$ is given by : ($c$ is the velocity of light)

A

$\frac{1}{c}\left( {6\hat k + 8\hat i} \right)\,\cos \,\left[ {\left( {6x - 8z + 10ct} \right)} \right]$

B

$\frac{1}{c}\left( {6\hat k - 8\hat i} \right)\,\cos \,\left[ {\left( {6x + 8z - 10ct} \right)} \right]$

C

$\frac{1}{c}\left( {6\hat k + 8\hat i} \right)\,\cos \,\left[ {\left( {6x + 8z - 10ct} \right)} \right]$

D

$\frac{1}{c}\left( {6\hat k - 8\hat i} \right)\,\cos \,\left[ {\left( {6x + 8z + 10ct} \right)} \right]$

(JEE MAIN-2019)

Solution

$\overrightarrow{\mathrm{E}}=10 \hat{\mathrm{j}} \cos (6 x+8 z-10 \mathrm{ct})$

$\mathrm{B}_{\mathrm{o}}=\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{C}}=\frac{10}{\mathrm{C}}$

$\mathrm{W}=10\, \mathrm{C}$

$\because \,\hat E \times \hat B = \hat C$

$\left| {\begin{array}{*{20}{c}}
  {\hat i}&{\hat j}&{\hat k} \\ 
  0&1&0 \\ 
  {{B_x}}&{{B_y}}&{{B_z}} 
\end{array}} \right| = \frac{{6\hat i + 8\hat j}}{{10}}$

$ \Rightarrow {B_z}\hat i + 0\hat j – {B_x}\hat k = \frac{3}{5}\hat i + \frac{4}{5}\hat j$

${B_z} = \frac{3}{5},\,{{\text{B}}_{\text{y}}} = 0,\,{{\text{B}}_{\text{z}}} = \frac{4}{5}$

$\,\therefore \overrightarrow {\text{B}}  = \frac{1}{{\text{C}}}( – 8\widehat {\text{i}} + 6\widehat {\text{k}})\cos (6{\text{x}} + 8{\text{z}} + 10{\text{ct}})$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.